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Abstract. A path-integral formalism is proposed for studying the dynamical evolution in time of patterns
in an artificial neural network in the presence of noise. An effective cost function is constructed which
determines the unique global minimum of the neural network system. The perturbative method discussed
also provides a way for determining the storage capacity of the network.
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1 Introduction

It has been of interest since long to understand the mech-
anism of learning and memory in biological systems and
machines. Studies of associative memory have sought to
model the process of pattern recognition and recall using
specific cost functions.

The similarity of the McCulloch-Pitts neural network
to the Ising spin system has enabled statistical physics ap-
proaches [1–4] to be used to get information like the stor-
age capacity of the network. In the “space of interactions”
approach of Gardner et al. [2,3], an imbedding condition
is postulated and the energy function counts the number
of weakly-imbedded pattern spins which have stability less
than a specified value. Though this approach does a sys-
tematic study of a neural network configuration at any
given instance of time, it does not address the question of
time evolution of the network configuration. Some years
ago, Hertz et al. [5,6] studied the dynamics of learning in a
single-layer neural network using a Langevin equation for
the evolution in time of the synaptic efficacies. In these
papers the authors have investigated the role of noise in
learning and studied the possible phase transitions in the
learning process.

In our work we have taken such a viewpoint, of look-
ing at the learning process as a non-equilibrium stochas-
tic process, as our starting point for constructing a path-
integral framework for studying neural network dynamics.

The problem of neural networks getting trapped into
spurious states or local minima is well-known and a
method for directly getting to the global minimum of the
network is highly desirable. Of much more interest is a sys-
tematic theory which gives a framework for determining
the global minimum of the neural network model, inde-
pendent of the choice of the cost function.
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An attempt has been made in this work to achieve this
through the path-integral framework using concepts from
quantum and statistical field theory — we have considered
a perceptron only for the sake of simplicity.

In this framework it is seen that the patterns in the
network settle from non-equilibrium states into certain at-
tractor states which correspond to those with lowest en-
ergy at equilibrium, or for large values of the time. We
construct an “effective cost function” for any cost func-
tion one starts with, and discuss how the global minimum
for a neural network can be determined and how one can
calculate the storage capacity of the network with this
construction.

2 Langevin dynamics in a path-integral
approach

Langevin dynamics has been applied to analyse disordered
systems, in particular, to spin glasses and to retrieval
processes in attractor neural network models with fixed
weights, by a number of authors [7]. In our work, we look
at learning dynamics from a slightly different viewpoint —
through a path-integral framework, and with a dynamical
evolution in time for the synaptic efficacies.

As in [5,6], we view the problem of learning in neu-
ral networks as a stochastic process and for simplicity, we
look at the perceptron only, with one layer of connections.
We postulate a stochastic Langevin dynamics for the evo-
lution in time of the synaptic efficacies wij

∂ωi(τ)
∂τ

= −γT δE(ωi)
δωi(τ)

+ ηi(τ) (1)

where the input index i takes values from 1 to N and
we have omitted the output index which can be treated
separately. ηi(t) stands for a random white noise source,
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T is the noise level, E is the cost function and the pa-
rameter γ describes the learning rate. The system can al-
ternatively be thought to be coupled to a heat reservoir
at temperature T (which represents the noise level) and
evolves in time t until it reaches an equilibrium configu-
ration at t→∞.

Here, and in the following, the space label has been
suppressed and the index i should be interpreted to in-
clude the space variable also. We assume that the noise
sources are Gaussian with the correlations:

〈ηi(τ)〉 = 0
〈ηi(τ)ηj(τ ′)〉 = 2γTδijδ(τ − τ ′). (2)

The values of the synaptic efficacies at any instant of time
are determined by solving (1) and the correlations between
them can be calculated using (2).

We wish to construct a partition function and a path
integral framework for this simplest type of neural net-
work which incorporates the time evolution of the synap-
tic strengths. Pattern recall and recognition takes place
best when the Hamming distance between the target ζµi
for pattern µ = 1, . . . , p and the input pattern ξνi is min-
imal for µ = ν. This means that the synaptic strengths
ωij change in such a way as to descend the cost function
surface.

In an artificial neural network, the problem of the sys-
tem getting trapped in its various local minima or spurious
states is a familiar one. Here, prior knowledge of the global
minimum for the system and the synaptic efficacies cor-
responding to it would be very useful as it would save a
great deal of effort and computer time and enable greater
efficiency in solving pattern recognition and associative
memory problems.

We adapt the procedure which was elucidated by
Gozzi [8] in a different context, to the neural network sys-
tem and write down a partition function for this system
evolving in time through the Langevin dynamics of (1):

Z[J ] = N
∏
i,µ

∫ τ

0

DωiDηi e−
1
γT

R
Ji(τ

′)ωi(τ
′)dτ ′

× P (ω(0))δ(ωi − ωiη)e−
R η2

i
4γT dτ ′ (3)

where N is a normalization constant, and we have intro-
duced an external source Ji(t) which probes the fluctua-
tions of the ergodic ensemble. At the end of the calcula-
tions, in the thermodynamic limit N → ∞, Ji would be
set to zero. ωiη is the solution of the Langevin equation
(1) with the initial probability distribution P (ω(0)).

Using some algebraic manipulations we now rewrite
this partition function in such a manner that the dynam-
ical evolution of the network configuration in time be-
comes more apparent and it is seen that for large values
of the time, the patterns evolve into the configuration cor-
responding to the ground state energy of the system.

From (1), we can write:

δ(ωi − ωiη) = δ

(
ω̇i + γT

δE

δωi
− ηi

) ∥∥∥∥ δηiδωi

∥∥∥∥ (4)

where the Jacobian
∥∥∥ δηδω∥∥∥ of the transformation ηi → ωi

can be written as:∥∥∥∥ δηiδωj

∥∥∥∥ = det
[(
δij∂τ + γT

δ2E

δωi(τ)δωj(τ ′)

)
δ(τ − τ ′)

]
= exp [tr ln ∂τ (δijδ(τ − τ ′)

+ ∂τ ′
−1γT

δ2E

δωi(τ)δωj(τ ′)

)]
(5)

and ∂τ ′−1 satisfies:

∂τG(τ − τ ′) = δ(τ − τ ′). (6)

Equation (4) then reduces to:∥∥∥∥ δηiδωi

∥∥∥∥ = exp {tr [ln ∂τ + ln (δ(τ − τ ′)

+ Gij(τ − τ ′)γT
δ2E

δωj(τ)δωi(τ ′)

)]}
· (7)

Since we are primarily interested in the dynamical evolu-
tion of the patterns of the neural network forward in time,
the Green’s function G(τ − τ ′) must satisfy

G(τ − τ ′) = θ(τ − τ ′). (8)

Substituting for G from (7) into (6), and expanding out
the logarithm we obtain∥∥∥∥ δηiδωi

∥∥∥∥ = e
γT

R
τ
0 dτ ′θ(0) δ2E

δωi(τ′)2 (9)

where an overall factor of tr ln ∂τ in the exponential has
been absorbed in the normalization. We choose to work
with the mid-point prescription θ(0) = 1/2 which leads to∥∥∥∥ δηiδωi

∥∥∥∥ = e
γT
2

R τ
0 dτ ′ δ2E

δωi(τ′)2 . (10)

From (1), (3) and (10) the partition function can be rewrit-
ten as

Z[J ] = N
∏
i,µ

∫
Dωi P (ω(0))e−

1
γT

R τ
0 Ji(τ

′)ωi(τ
′)dτ ′

×e
γT
2

R
τ
0 dτ ′ δ

2E
δω2
i e−

1
4γT

R
τ
0 dτ ′(ω̇i+γT δE

δωi
)
2

= N
∏
i,µ

∫
Dωi P (ω(0))

×e
−
R
τ
0 dτ ′{ 1

γT Ji(τ
′)ωi(τ

′)+ 1
4γT [ω̇i

2+(γT )2( δEδωi
)
2−2(γT )2 δ

2E
δω2
i

]}

×e−
1
2E(τ)e

1
2E(0). (11)

The N -point correlations between the synaptic efficacies
can be calculated by taking the N th functional derivative
of Z[J ] with respect to J . After making a change of scale
of the time variable τ as: τ ′ → τ ′′ = 2τ ′ we find that the
partition function can be rewritten as

Z[J ] = N
∏
i,µ

∫
DωiP (ω(0))

× e−
1
γT

R 2τ
0 LFP dτ ′−

R 2τ
0 dτ ′′ 1

γT Ji(τ
′′)ωi(τ

′′)e−
E(2τ)

2 e
E(0)

2

(12)
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where we have defined a Fokker-Planck Lagrangian as:

LFP =
1
2

(
dωi
dτ

)2

+
(γT )2

8

(
δE

δωi

)2

− γT

4
δ2E

δω2
i

· (13)

It may be observed that this can be derived from a Fokker-
Planck Hamiltonian HFP which obeys the heat equation

∂Ψ

∂τ
= −2HFPΨ (14)

where

Ψ = e
E(ω)

2 P (ω, τ) (15)

and

HFP = γT

[
−1

2
δ2

δω2
i

+
1
8

(
δE

δωi

)2

− 1
4
δ2E

δω2
i

]
· (16)

It is possible to find a series solution to (14):

Ψ(ω, τ) =
∑
n

cnψne−2Enτ (17)

where cn are normalizing constants and En ≥ 0 are the
energy eigenvalues of the operator equation:

HFPψn = Enψn. (18)

It is easy to see that HFP is a positive semi-definite oper-
ator with its ground state E0 = 0 defined by ψ0 = e−

E(ω)
2 .

In the equilibrium limit t → ∞, only the ground state
configuration ψ0 contributes to P (ω, τ) and we have

lim
t→∞

P (ω, τ) = c0e−E(ω). (19)

Interestingly, following Gozzi [9], it is also possible to de-
fine a canonical momentum Π̂ conjugate to the variable
representing the synaptic efficacy, from the Fokker-Planck
Lagrangian:

Π̂i =
δLFP

δω̇i
=

1
2γT

(
ω̇i + γT

δE

δωi

)
(20)

so that the partition function can be written in the form
of the Gibbs average of equilibrium statistical mechanics:

Z[J ] =

N
∏
i,µ

∫
Dωi(0)DΠ̂i(0)e−

R
{ 1

2 Π̂
2
i +E(ω)+Ji(τ

′)ωi(τ
′)}dτ ′ .

(21)

The advantage of writing Z in this form is that the inte-
gration measure and Z are independent of τ .

The correlations between the synaptic strengths can be
calculated either using equations (2) within the Langevin

approach, or using the equivalent Fokker-Planck equa-
tions. Since the noise-sources are delta-correlated, the cor-
relations between the synaptic efficacies would be station-
ary for a proper choice of the initial probability P (ω(0)):

〈ωη(τ1) . . . ωη(τl)〉η,P (ω(0)) =

δ(τ1 − τ2, τ2 − τ3, . . . , τl − τl−1) (22)

where 〈.〉η,P (ω(0)) denotes average over both η and ω(0).
Since the correlations depend only on the time differences,
these would remain invariant under a uniform translation
in the time:

〈ωη(τ1) . . . ωη(τl)〉η,P (ω(0)) =

〈ωη(τ1 + t) . . . ωη(τl + t)〉η,P (ω(0)). (23)

Setting all τi’s equal and taking the t→∞ on both sides
we find that while the left hand side of equation (23) is in-
dependent of t, the right hand side is the average with the
equilibrium distribution (19). From here it is clear that it
is not necessary to take the t → ∞ limit to get the equi-
librium steady state distribution — at every finite t, the
stochastic correlations are already the steady-state equi-
librium ones. As the steady state equilibrium distribution
for the neural network system corresponds to its lowest
energy state, it is clear that as t→∞, the patterns evolve
into that having the lowest energy which acts as the at-
tractor state for the dynamical system.

It is necessary to determine the global minimum of the
cost function. We do this by constructing an effective cost
function Γeff [ω̄] by performing a Legendre transformation
which removes the dependence on Ji in favour of a depen-
dence on the average ω̄i of the synaptic strengths:

Γeff [ω̄] = −γT lnZ[J ]−
∫ τ

0

Ji(τ ′)ω̄i(τ ′)dτ ′ (24)

where

ω̄i = 〈ωi〉 = −γT δ lnZ[J ]
δJi

Ji = −δΓeff [ω̄]
δω̄i

· (25)

By construction, the exact effective cost function (24) is
convex [10] and its global minimum gives the ground state
energy of the neural network system.

Equations (24) and (25) can be combined to give

Γeff [ω̄] = −γT ln
∏
i,µ

∫
Dωi(0)e

−E(ω(0))
2 Dωi(τ)

× e−
E(ω(τ))

2 D̃ωie−
1
γT

R τ
0 [LFP− δΓeff

δω̄i
(ωi−ω̄i)]dτ ′.

(26)

Here, just as in [7], the time interval between 0 and τ has
been sliced into N − 1 infinitesimal parts:

D̃ωi = lim
N→∞

N−1∏
i=1

Dωτi , (27)
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ωτi being the configuration of the synaptic efficacies at
time τ .

As it is not possible in general to solve this exactly, we
find a solution by assuming that we can make an expansion
of Γeff [ω̄] in powers of a small parameter which we take
as γT :

Γeff [ω̄] =
∞∑
n=0

(γT )nΓ (n)[ω̄]. (28)

We discuss later how one can explicitly determine the
value of the expansion parameter.

Substituting (28) into (26) and making a Taylor
expansion of LFP about ω̄ we obtain

Γeff [ω̄] =
∑
i,µ

LFP(ω̄)− γT
∑
i,µ

N ln
∫
Dω̃i(0)e−E(ω(0))

×Dω̃ie
−
R τ
0 dτ ′{ 1

2
δ2LFP

δω̃i
2 ω̃2

i+···−(γT )1/2 δΓ (1)
δω̃i

ω̃i+O(γT )2}
(29)

where we have performed the shift:

(γT )1/2
ω̃i = ωi − ω̄i. (30)

By substituting the expansion (28) on the left hand side
of (29), we obtain

Γ (0)[ω̄] =
∑
i,µ

LFP(ω̄)

Γ (1)[ω̄] =
1
2

∑
i,µ

ln det
δ2LFP

δω̄2
i

· (31)

Thus the global minimum for the neural network system
can be found by minimising

Γeff [ω̄] =
∑
i,µ

[
LFP(ω̄) +

γT

2
ln det

δ2LFP

δω̄2
i

+ · · ·
]

(32)

with respect to ω̄i.
In the equilibrium limit the ω̇i term in (13) would not

contribute to LFP, so using (13) in (32) and finding the
root ω̄imin of the equation

δΓeff [ω̄]
δω̄i

= 0 (33)

which minimizes Γeff , it is possible to avoid the problem of
spurious minima for any specific choice of the cost function
for a particular learning rule.

In this framework, the roots of (33) giving rise to the
various local minima for the particular neural network un-
der consideration are the source of the spurious minima
for the system. Since Γeff [ω̄] is convex, it is clear that by
finding the root which gives the minimal value of the ef-
fective cost function, one can immediately arrive at the
global minimum of the system without getting any inter-
ference from the spurious states.

As an example, consider the cost function for a
perceptron discussed in [6]:

E =
1
2

∑
µ

ζµ − 1√
N

∑
j

ωjξ
µ
j

2

+
λ

2

∑
j

ωj
2 (34)

where the constant λ was added to keep the connections
from going to infinity. The external source Ji in our frame-
work plays the role of the auxiliary field hi in [6].

The Fokker-Planck Lagrangian in this case is:

LFP =
1
2
ω̇2
i +

(γT )2

8

((
λ+

1
N

∑
µν

∑
i

ξµi ξ
ν
i

)
ωi

−
∑
µν

1√
N
ζµξνi

)2

− γT
4

(
1
N

∑
µν

ξνi ξ
µ
i + λ

)
.

(35)

Substituting LFP from (35) into (12) and using the first
relation in (25) we obtain after setting J = 0 in the
equilibrium limit,

ω̄i =
1√
N
ξνi

(
λ+

1
N

∑
µν

∑
i

ξµi ξ
ν
i

)−1

νµ

ζµ. (36)

This is in agreement with the result obtained in [6].
From the fluctuation-response theorem, the response

function at equilibrium is just the full connected propaga-
tor Gik which is given by:

G−1
ik = G−1

0 ik +Σik (37)

whereG0 is the tree-level propagator and one can calculate
the self-energy Σ using diagrammatic methods [5,6]. It
was shown in [5,6] that the self energy is given by:

Σ =
α

1 +G
(38)

where α = pmax/N is the storage capacity of the net-
work. In these papers the authors calculated the storage
capacity of the network at equilibrium using diagrammatic
methods.

Since we have G−1
ij = (γT )−1 δ2Γeff

δω̄iδω̄j
, we can also

determine the storage capacity analytically from:

α=1 + (γT )−1 δ
2Γeff

δω̄2
− δ2LFP

δω̄2

(
1 + γT

(
δ2Γeff

δω̄2

)−1
)
·

(39)

Since we have assumed that γT is a small parameter, it
is sufficient to work up to first order in the γT expansion
of Γeff . The steady-state equilibrium limit τ → ∞ corre-
sponds to the most ordered state when the patterns have
settled into their attractor states. In the phase space of
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synaptic strengths, it is thus a state of minimum symme-
try or zero entropy. This means that in the equilibrium
limit,

δ

δT
(−γT lnZ[J ]) =

δ

δT

(
Γeff [ω̄]

+
1
γT

∫ τ

0

Ji(τ ′)ω̄i(τ ′)dτ ′
)

= 0.

(40)

In the thermodynamic limit N →∞, J is set to zero, and
we get the result that for the attractor states:

δΓeff [ω̄]
δT

= 0 (41)

which shows that in this limit the effective cost function
is stable with respect to changes in the noise level.

Condition (41) can be used to determine the value of
the quantity γT at which the system settles into an at-
tractor state. For the cost function (34) for example, one
obtains:

γT =
1√
3

( 1
N

∑
µν ξ

ν
i ξ
µ
i + λ)1/2[

ln det(λ+ 1
N

∑
µν

∑
i ξ
µ
i ξ

ν
i )
]1/2 · (42)

Applying equations (32) and (39) to the example of (34),
and using equation (35), we obtain the following result for
α:

α = (1− γT )

1 +
γT

4

∑
i

(
λ+

1
N

∑
µν

ξµi ξ
ν
i

)2
 . (43)

The value of γT obtained in (42) can then be substituted
into (43) so that in the thermodynamic limit one obtains
the result

α = 1 +
1√
3

(
1
N

∑
µν ξ

ν
i ξ
µ
i + λ

ln det(λ+ 1
N

∑
µν

∑
i ξ
µ
i ξ

ν
i )

)1/2

×
(

1
4

(λ+
1
N

∑
µν

∑
i

ξµi ξ
ν
i )

2

− 1

)

− 1
12

(
1
N

∑
µν ξ

ν
i ξ
µ
i + λ

ln det(λ+ 1
N

∑
µν

∑
i ξ
µ
i ξ
ν
i )

)

×
(
λ+

1
N

∑
µν

∑
i

ξµi ξ
ν
i

)2

(44)

for the storage capacity of the network described by the
cost function (34).

Although in the pseudo-inverse learning rule consid-
ered in the example above, the relation between the input
and the output is linear, our construction of the effective
cost function and our method for calculating the storage
capacity of the network is applicable also for models with
non-linear input-output relation such as:

ζµ = f(
∑
j

ωjξ
µ
j /
√
N) (45)

where f(x) is a non-linear function of x. The procedure
itself at no stage depends on any particular model and is
independent of whether the input-output relation is linear
or non-linear.

In this manner it is possible to calculate the storage
capacity for any neural network system, in a completely
analytical manner, without having to resort to diagram-
matic methods, and independent of the choice of the cost
function. It may be observed that the procedure we have
set up in the foregoing allows the explicit calculation of
the synaptic efficacies ωij from the input ξµi and the out-
put ζµi .

3 Discussion
We have shown that a neural network system can be
viewed as a non-equilibrium stochastic system of synap-
tic efficacies which evolve for very large values of the time
into an equilibrium configuration having the lowest energy
which acts as the attractor state of the network.

An effective cost function is constructed and a pertur-
bative scheme is developed for calculating it. The global
minimum of the effective cost function can be determined
and gives the exact ground state energy of the system.
It is shown that in the thermodynamic limit, the effec-
tive cost function is invariant under changes in the noise
level. In the perturbation expansion we have constructed
for Γeff , we have assumed that the expansion parameter
γT is small. This can be ensured by always keeping the
noise-level low so that γT � 1.

In this paper we have constructed a path integral
framework for the simplest case of a perceptron. It should
be possible to generalize this construction for the more
realistic case of many-layered neural networks and to ar-
rive at their global minima straightaway without having
to bother about the various local minima.

I would like to acknowledge support from the Institute for
Robotics & Intelligent Systems, Centre for Artificial Intelli-
gence & Robotics, Bangalore, India, during a large part of this
work.
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